Search Site

Blogs

Radio Frequency Identification Technology
1 September 2015

Radio-frequency Identification

Radio-frequency identification (RFID) is the use of an object (typically referred to as an RFID tag) applied to or incorporated into a product, animal, or person for the purpose of identification and tracking using radio waves. Some tags can be read from several meters away and beyond the line of sight of the reader.

Most RFID tags contain at least two parts. One is an integrated circuit for storing and processing information, modulating and demodulating a radio-frequency (RF) signal, and other specialized functions. The second is an antenna for receiving and transmitting the signal.

There are generally three types of RFID tags: active RFID tags, which contain a battery and can transmit signals autonomously, passive RFID tags, which have no battery and require an external source to provoke signal transmission and battery assisted passive (BAP) which require an external source to wake up but have significant higher forward link capability providing great read range.

Today, RFID is used in enterprise supply chain management to improve the efficiency of inventory tracking and management.


RFID History and Technology Background

The picture to the right shows an RFID tag used for electronic toll collection. An RFID tag used for electronic toll collection

In 1946 Léon Theremin invented an espionage tool for the Soviet Union which retransmitted incident radio waves with audio information. Sound waves vibrated a diaphragm which slightly altered the shape of the resonator, which modulated the reflected radio frequency. Even though this device was a passive covert listening device, not an identification tag, it is considered to be a predecessor of RFID technology.

Similar technology, such as the IFF transponder invented in the United Kingdom in 1939, was routinely used by the allies in World War II to identify aircraft as friend or foe. Transponders are still used by most powered aircraft to this day.

Another early work exploring RFID is the landmark 1948 paper by Harry Stockman, titled "Communication by Means of Reflected Power" (Proceedings of the IRE, pp 1196–1204, October 1948). Stockman predicted that "…considerable research and development work has to be done before the remaining basic problems in reflected-power communication are solved, and before the field of useful applications is explored."

Mario Cardullo's U.S. Patent 3,713,148 in 1973 was the first true ancestor of modern RFID; a passive radio transponder with memory. The initial device was passive, powered by the interrogating signal, and was demonstrated in 1971 to the New York Port Authority and other potential users and consisted of a transponder with 16 bit memory for use as a toll device. The basic Cardullo patent covers the use of RF, sound and light as transmission media. The original business plan presented to investors in 1969 showed uses in transportation (automotive vehicle identification, automatic toll system, electronic license plate, electronic manifest, vehicle routing, vehicle performance monitoring), banking (electronic check book, electronic credit card), security (personnel identification, automatic gates, surveillance) and medical (identification, patient history).

A very early demonstration of reflected power (modulated backscatter) RFID tags, both passive and semi-passive, was performed by Steven Depp, Alfred Koelle, and Robert Freyman at the Los Alamos National Laboratory in 1973. The portable system operated at 915 MHz and used 12-bit tags. This technique is used by the majority of today's UHFID and microwave RFID tags.

The first patent to be associated with the abbreviation RFID was granted to Charles Walton in 1983 U.S. Patent 4,384,288.

The largest deployment of active RFID is the US Department of Defense use of Savi active tags on every one of its more than a million shipping containers that travel outside of the continental United States (CONUS) the largest passive RFID deployment is the Defense Logistics Agency (DLA) deployment across 72 facilities implemented by ODIN who also performed the global roll-out for Airbus consisting of 13 projects across the globe.


RFID Miniaturization

RFID tags can be highly miniaturized, which makes it easy to conceal or incorporate them in other items. For example, in 2009 researchers at Bristol University successfully glued an RFID chip to live ants in order to study their behavior. This trend towards increasingly miniaturized RFID is likely to continue as technology advances, however the ability to read at distance is limited by the inverse square law of physics - so the smaller an antenna becomes the shorter the read range.

Hitachi holds the record for the smallest RFID chip, at 0.05mm x 0.05mm. The Mu chip tags are 64 times smaller than the new RFID tags. Manufacture is enabled by using the Silicon-on-Insulator (SOI) process. These "dust" sized chips can store 38-digit numbers using 128-bit Read Only Memory (ROM). A major challenge is the attachment of the antennas, thus limiting read range to only milimeters.

Potential alternatives to the radio frequencies (0.125–0.1342, 0.140–0.1485, 13.56, and 840–960 MHz) used are seen in optical RFID (or OPID) at 333 THz (900 nm), 380 THz (788 nm), 750 THz (400 nm). The awkward antennas of RFID can be replaced with photovoltaic components and IR-LEDs on the ICs.


RFID Current Uses

RFID is becoming increasingly prevalent as the price of the technology decreases. In January 2003 Gillette announced that it ordered 500 million tags from Alien Technology. Gillette VP Dick Cantwell, now an employee of Cisco says the company paid "well under ten cents" for each tag. The Japanese HIBIKI initiative aims to reduce the price to 5 Yen (4 eurocents). And in January 2009 Envego announced a 5.9 cent tag.

IT Asset Tracking

In 2008 more than a dozen new passive UHF RFID tags emerged to be specifically mounted on metal. At the same time new integrated circuits (ICs) were introduced by Impinj and NXP (formerly Philips) which proved much better performance and the IT Asset Tracking application exploded. The largest adopter to date appear to be Bank of America and Wells Fargo - each with more than 100,000 assets across more than a dozen data centers.

Race Timing

Many forms of RFID race timing have been in use for timing races of different types since 2004. It is used for registering race start and end timings for individuals in a marathon-type race where it is impossible to get accurate stopwatch readings for every entrant. Individuals wear a chest number containing passive tags which are read by antennae placed alongside the track. UHF based tags instead of Low or high frequency last generation tags provide accurate readings with specially designed antennas. Rush error, lap count errors and accidents at start time are avoided since anyone can start and finish anytime without being in a batch mode. This method is being adapted by many recruitment agencies which have a PET (Physical Endurance Test) as their qualifying procedure especially in cases where the candidate volumes may run into millions (Indian Railway Recruitment Cells, Police and Power sector). An Indian Software company has perfected the system for the same using UHF tags for the first time and they are able to process more than 30,000 candidates per day.

Passports

Countries that put RFID in passports include Norway (2005), Japan (March 1, 2006), most EU countries (around 2006) including Ireland and UK, Australia and the United States (2007), Serbia (July 2008), Republic of Korea (August 2008), Albania (January 2009).

Standards for RFID passports are determined by the International Civil Aviation Organization (ICAO), and are contained in ICAO Document 9303, Part 1, Volumes 1 and 2 (6th edition, 2006). ICAO refers to the ISO/IEC 14443 RFID chips in e-passports as "contactless integrated circuits". ICAO standards provide for e-passports to be identifiable by a standard e-passport logo on the front cover.

The first RFID passports ("E-passport") were issued by Malaysia in 1998. In addition to information also contained on the visual data page of the passport, Malaysian e-passports record the travel history (time, date, and place) of entries and exits from the country.

In 2006, RFID tags were included in new US passports. The US produced 10 million passports in 2005, and it has been estimated that 13 million will be produced in 2006. The chips inlays produced by Smartrac will store the same information that is printed within the passport and will also include a digital picture of the owner. The US State Department initially stated the chips could only be read from a distance of 10 cm (4 in), but after widespread criticism and a clear demonstration that special equipment can read the test passports from 10 meters away, the passports were designed to incorporate a thin metal lining to make it more difficult for unauthorized readers to "skim" information when the passport is closed. The department will also implement Basic Access Control (BAC), which functions as a Personal Identification Number (PIN) in the form of characters printed on the passport data page. Before a passport's tag can be read, this PIN must be entered into an RFID reader. The BAC also enables the encryption of any communication between the chip and interrogator.

Security expert Bruce Schneier has suggested that a mugger operating near an airport could target victims who have arrived from wealthy countries, or a terrorist could design an improvised explosive device which functioned when approached by persons from a particular country if passengers did not put their cards in an area close to their body (high liquid and saline content) or in a foil-lined wallet.

Some other European Union countries are also planning to add fingerprints and other biometric data, while some have already done so.

Mobile Payment

Credit card companies are now looking for payment solutions for adding contactless payment cards to any mobile phone. A carrier solution that satisfied the industries needs is now available. Less than 3mm thick withstand its environment for 2 years Sub-card protected from the elements and secured in the carrier once inserted.

Transportation Payments


An Electronic Road Pricing gantry in Singapore. Gantries such as these collect tolls in high-traffic areas from active RFID units in vehicles.





PayPass RFID chip removed from a MasterCard.



  • RFID is being used for E - Tolling in Motorways, Pakistan, Implemented by NADRA.
     
  • Throughout Europe, and in particular in Paris (system started in 1995 by the RATP), Lyon, Bordeaux, Nancy and Marseilles in France, in the whole of the Portuguese highway system and in many Portuguese public car parks, Milan, Turin, Naples and Florence in Italy, and Brussels in Belgium, RFID passes conforming to the Calypso (RFID) international standard are used for public transport systems. They are also used now in Canada (Montreal), Mexico, Israel, Bogotá and Pereira in Colombia, Stavanger in Norway, Luxembourg, etc.
  • In Toronto, Ontario, Canada and surrounding areas, Electronic Road Pricing systems are used to collect toll payments on Highway 407.
  • In Seoul, South Korea and surrounding cities, T-money cards can be used to pay for public transit. Some other South Korean cities have adopted the system, which can also be used in some stores as cash. T-money replaced Upass, first introduced for transport payments in 1996 using MIFARE technology.
  • In Turkey, RFID has been used in the motorways and bridges as a payment system since [Nov 2008]; it is also used in electronic bus tickets in Istanbul.
  • In Hong Kong, mass transit is paid for almost exclusively through the use of an RFID technology, called the Octopus Card. Originally it was launched in September 1997 exclusively for transit fare collection, but has grown to be similar to a cash card, and can still be used in vending machines, fast-food restaurants and supermarkets. The card can be recharged with cash at add-value machines or in shops, and can be read several centimetres from the reader. The same applies for Delhi Metro, the rapid transit system in New Delhi, capital city of India.
  • The Moscow Metro, the world's second busiest, was the first system in Europe to introduce RFID smartcards in 1998.
  • The Washington, D.C. Metrorail became the first U.S. urban mass-transit system to use RFID technology when it introduced the SmarTrip card in 1999.
  • JR East in Japan introduced SUICa (Super Urban Intelligent Card) for transport payment service in its railway transportation service in November 2001, using Sony's FeliCa (Felicity Card) technology. The same Sony technology was used in Hong Kong's Octopus card, and Singapore's EZ-Link card.
  • In Singapore, public transportation buses and trains employ passive RFID cards known as EZ-Link cards. Traffic into crowded downtown areas is regulated by variable tolls imposed using an active tagging system combined with the use of stored-value cards (known as CashCards).
  • RFID is used in Malaysia Expressways payment system. The name for the system is Touch 'n Go. As the system's name indicates, the card is designed to only function as an RFID card when the user touches it.
  • Since 2002, in Taipei, Taiwan the transportation system uses RFID operated cards as fare collection. The Easy Card is charged at local convenience stores and metro stations, and can be used in Metro, buses and parking lots. The uses are planned to extend all throughout the island of Taiwan in the future.
  • In the United States, the Chicago Transit Authority has offered the Chicago Card and the Chicago Card Plus for rail payments across the entire system since 2002 and for bus payments since 2005. The MBTA introduced the RFID enabled CharlieCard across Boston's subway, streetcar, and bus system in 2006, replacing the decades old token based fare collection system.
  • The New York City Metropolitan Transportation Authority conducted an RFID trial that utilized PayPass by MasterCard. The trial primarily took place on the IRT Lexington Avenue Line with several busier stations on other lines also included. The trial will end on May 31, 2009, however the option of using PayPass may be reintroduced on a wider scale at a later date. The MTA is also studying the possibility of accepting SmartLink (introduced by PATH) for fare payment on the New York City Subway and Buses, and as an eventual replacement for the MetroCard.
  • In the UK, operating systems for prepaying for unlimited public transport have been devised, making use of RFID technology. The design is embedded in a creditcard-like pass, that when scanned reveals details of whether the pass is valid, and for how long the pass will remain valid. The first company to implement this is the NCT company of Nottingham City, where the general public affectionately refer to them as "beep cards". It has since been successfully implemented in London, where "Oyster cards" allow for pay-as-you-go travel as well as passes valid for various lengths of time and in various areas.
  • In Oslo, Norway, the upcoming public transport payment is to be entirely RFID-based. The system was slated for introduction around spring 2007.
  • In Norway, all public toll roads are equipped with an RFID payment system known as AutoPASS.
  • RFID tags are used for electronic toll collection at toll booths with Georgia's Cruise Card, California's FasTrak, Colorado's E-470, Illinois' I-Pass, Oklahoma's Pikepass, the expanding eastern states' E-ZPass system (including Massachusetts's Fast Lane,Delaware, New Hampshire Turnpike, Maryland, New Jersey Turnpike, Pennsylvania Turnpike, West Virginia Turnpike, New York's Thruway system, Virginia, and the Maine Turnpike),Central Florida also utilizes this technology, via its E-PASS System. E-PASS and Sunpass are mutually compatible. Florida's SunPass, Various systems in Texas including D/FW's NTTA TollTag, the Austin metro TxTag and Houston HCTRA EZ Tag (which as of early 2007 are all valid on any Texas toll road), Kansas's K-Tag, The "Cross-Israel Highway" (Highway 6), Philippines South Luzon Expressway E-Pass, Brisbane's Queensland Motorway E-Toll System in Australia, Autopista del Sol (Sun's Highway), Autopista Central (Central Highway), Autopista Los Libertadores, Costanera Norte, Vespucio Norte Express and Vespucio Sur urban Highways and every forthcoming urban highway (in a "Free Flow" modality) concessioned to private investors in Chile, all toll tunnels in Hong Kong (Autotoll) and all highways in Portugal (Via Verde, the first system in the world to span the entire network of tolls), France (Liber-T system), Italy (Telepass), Spain (VIA-T), Brazil (Sem Parar - Via Fácil). The tags, which are usually the active type, are read remotely as vehicles pass through the booths, and tag information is used to debit the toll amount from a prepaid account. The system helps to speed traffic through toll plazas as it records the date, time, and billing data for the RFID vehicle tag. The plaza- and queue-free 407 Express Toll Route, in the Greater Toronto Area, allows the use of a transponder (an active tag) for all billing. This eliminates the need to identify a vehicle by licence plate.
  • The Transperth public transport network in Perth, Western Australia uses RFID technology in the new SmartRider ticketing system.
  • In Atlanta, MARTA (Metropolitan Atlanta Rapid Transit Authority) has transitioned its bus and rail lines from coin tokens to the new Breeze Card system which uses RFID tags embedded in disposable paper tickets. More permanent plastic cards are available for frequent users.
  • In Rio de Janeiro, "RioCard" passes can be used in buses, ferries, trains and subway. There are two types, one you cannot recharge, the other one can be recharged if it's been bought by the company you work for, if they provided it (only in Brazil).
  • A number of ski resorts, particularly in Scandinavia, the French Alps and in the Spanish and French Pyrenees, have adopted RFID tags to provide skiers hands-free access to ski lifts. Skiers don't have to take their passes out of their pockets.
  • In Santiago (Chile) the subway system Metro and the recently implemented public transportation system Transantiago use an RFID card called "Bip" or "Multivia".
  • In Medellín (Colombia) the recently-implemented card system for the Metro system uses an RFID card called Cívica.
  • In Dubai, (United Arab Emirates) drivers through Sheikh Zayed Road and Garhoud Bridge pay tolls using RFID tags called Salik (road toll).
  • In San Diego, CA Metropolitan Transit Systems (MTS), North County Transit District (NCTD), And The San Deigo Association Of Governments(SANDAG), Use a Re-Writable RFID Smart Card Referred to Locally As The Compass Card, To Store Daily, Weekly, or Monthly Passes and/or Cash Value, To make Boarding The Buses and Trains quicker and easier.
  • In Finland, the RFID travel card system used in the Greater Helsinki region is the largest of systems in Europe that cover all modes of traffic (Busses, Trams, Commuter Train Units, Metros and Ferry Terminals) operation since 2001.
  • In Cali (Colombia) the recently-implemented card system for the Masivo Integrado de Occidente(MIO) system uses an RFID card.
  • In Dublin (Ireland) the LUAS light rail system has been using an RFID enabled 'smart card' system since March 2005.
  • In Seattle the Orca Card was introduced in 2009 for fares on buses, ferries, light rail, a street car, and commuter trains. In Tacoma, a sticker tag is used for paying the toll of the Tacoma Narrows Bridge.
  • In the United States, the Zipcar car sharing service uses RFID cards for locking and unlocking cars and for member identification.

 

RFID and Asset Management

RFID (Radio Frequency Identification) combined with mobile computing and Web technologies provide an effective way for organizations to identify and manage their assets. Initially introduced to major retail by Craig Patterson, Knoxville, TN. Mobile computers, with integrated RFID readers, can now deliver a complete set of tools that eliminate paperwork, give positive proof of identification and prove attendance. Errors are virtually unheard of as this approach eliminates manual data entry. Web based management tools allow organizations to monitor their assets and make management decisions from anywhere in the world. Web based applications now mean that third parties, such as manufacturers and contractors can be granted access to update asset data, including for example, inspection history and transfer documentation online ensuring that the end user always has accurate, real-time data. Organizations within the Plant industry are already using RFID tags combined with a mobile asset management solution to record and monitor the location of their assets, their current status, whether they have been maintained and most importantly if they comply with HSE regulations. Fitters within depots and those working remotely on project/client sites use mobile computers to complete and record job instructions. These completed work records are then synchronized with a web based database allowing support and administration staff to respond accordingly.
 

Product Tracking Using RFID

  • The Canadian Cattle Identification Agency began using RFID tags as a replacement for barcode tags. The tags are required to identify a bovine's herd of origin and this is used for tracing when a packing plant condemns a carcass. Currently CCIA tags are used in Wisconsin and by US farmers on a voluntary basis. The USDA is currently developing its own program.
  • High-frequency RFID or HFID/HighFID tags are used in library book or bookstore tracking, jewelry tracking, pallet tracking, building access control, airline baggage tracking, and apparel and pharmaceutical items tracking. High-frequency tags are widely used in identification badges, replacing earlier magnetic stripe cards. These badges need only be held within a certain distance of the reader to authenticate the holder. The American Express Blue credit card now includes a HighFID tag. In Feb 2008, Emirates Airline started a trial of RFID baggage tracing at London and Dubai airports.
  • BGN has launched two fully automated Smartstores that combine item-level RFID tagging and SOA to deliver an integrated supply chain, from warehouse to consumer.
  • UHF, Ultra-HighFID or UHFID tags are commonly used commercially in case, pallet, and shipping container tracking, and truck and trailer tracking in shipping yards.
  • In May 2007, Bear River Supply began utilizing Intelleflex Corporation's ultrahigh-frequency identification (UHFID) tags to help monitor their agricultural equipment.
  • In Colombia, "Federación Nacional de Cafeteros" uses an RFID solution to trace the coffee.
  • Purdue Pharma currently uses RFID to track shipments of the painkiller OxyContin.
  • In Berlin, Germany, the Berliner Wasserbetriebe (water treatment facility) Uses RFID systems from Psion Teklogix and Elektroniksystem-und-Logistik-GmbH (ESG) to identify and track its 60,000 assets.

Transportation and Logistics Using RFID

  • Logistics & Transportation is a major area of implementation for RFID technology. For example, Yard Management, Shipping & Freight and Distribution Centers are some areas where RFID tracking technology is used. Transportation companies around the world value RFID technology due to its impact on the business value and efficiency.
  • The North American railroad industry operates an automatic equipment identification system based on RFID. Locomotives and rolling stock are equipped with two passive RFID tags (one mounted on each side of the equipment); the data encoded on each tag identifies the equipment owner, car number, type of equipment, number of axles, etc. The equipment owner and car number can be used to derive further data about the physical characteristics of the equipment from the Association of American Railroads' car inventory database and the railroad's own database indicating the lading, origin, destination, etc. of the commodities being carried.
  • Aerospace applications that incorporate RFID technology are being incorporated into Network Centric Product Support architecture. This technology serves to help facilitate more efficient logistics support for systems maintenance on-board commercial aircraft.
  • Baggages passing through the Hong Kong International Airport are individually tagged with "HKIA" RFID tags as they navigate the airport's baggage handling system, which improves efficiency and reduces misplaced items.


Lap Scoring Using RFID

Passive and active RFID systems are used in off-road events such as Orienteering, Enduro and Hare and Hounds racing. Riders have a transponder on their person, normally on their arm. When they complete a lap they swipe or touch the receiver which is connected to a computer and log their lap time. The Casimo Group Ltd sells such a system, as does Sweden's SportIdent.


Animal Identification Using RFID

Implantable RFID tags or transponders can be used for animal identification. The transponders are more well-known as passive RFID technology, or simply "Chips" on animals.

Inventory Systems Using RFID

Automatic identification technology such as the Auto-ID system based on the Radio Frequency Identification (RFID) technology has significant value for inventory systems. Notably, the technology provides an accurate knowledge of the current inventory. In an academic study performed at Wal-Mart, RFID reduced Out-of-Stocks by 30 percent for products selling between 0.1 and 15 units a day. Other benefits of using RFID include the reduction of labor costs, the simplification of business processes, and the reduction of inventory inaccuracies.

In 2004, Boeing integrated the use of RFID technology to help reduce maintenance and inventory costs on the Boeing 787 Dreamliner. With the high costs of aircraft parts, RFID technology allowed Boeing to keep track of inventory despite the unique sizes, shapes and environmental concerns. During the first six months after integration, the company was able to save $29,000 in labour alone.

 
RFID Mandates

Wal-Mart and the United States Department of Defense have published requirements that their vendors place RFID tags on all shipments to improve supply chain management. Due to the size of these two organizations, their RFID mandates impact thousands of companies worldwide. The deadlines have been extended several times because many vendors face significant difficulties implementing RFID systems. In practice, the successful read rates currently run only 80%, due to radio wave attenuation caused by the products and packaging. In time it is expected that even small companies will be able to place RFID tags on their outbound shipments.

Since January 2005, Wal-Mart has required its top 100 suppliers to apply RFID labels to all shipments. To meet this requirement, vendors use RFID printer/encoders to label cases and pallets that require EPC tags for Wal-Mart. These smart labels are produced by embedding RFID inlays inside the label material, and then printing bar code and other visible information on the surface of the label.

Another Wal-Mart division, Sam's Club, has also moved in this direction. It sent letters dated Jan. 7, 2008 to its suppliers, stating that by Jan. 31, 2008, every full single-item pallet shipped to its distribution center in DeSoto, Texas, or directly to one of its stores served by that DC, must bear an EPC Gen 2 RFID tag. Suppliers failing to comply will be charged a service fee.

The DoD requirements for RFID tags on packages is prescribed in the Defense Federal Acquisition Regulations Supplements (DFARS) 252.211-7006. Positioning of the tag needs to be completed in accordance with the clause and definitions in MIL STD 129 and as of 1 March 2007, EPC Global tags must comply with EPCglobal Class 1 Generation 2 specification.


Promotion Tracking Using RFID

Manufacturers of products sold through retailers promote their products by offering discounts for a limited period on products sold to retailers with the expectation that the retailers will pass on the savings to their customers. However, retailers typically engage in forward buying, purchasing more product during the discount period than they intend to sell during the promotion period. Some retailers engage in a form of arbitrage, reselling discounted product to other retailers, a practice known as diverting. To combat this practice, manufacturers are exploring the use of RFID tags on promoted merchandise so that they can track exactly which product has sold through the supply chain at fully discounted prices.

 
RFID Human Implants


 

Hand with the planned location of the RFID chip.


 

 

 

 

 

 

 

 

Just after the operation to insert the RFID tag was completed.

 

 

 

 

 

 


Implantable RFID chips designed for animal tagging are now being used in humans. An early experiment with RFID implants was conducted by British professor of cybernetics Kevin Warwick, who implanted a chip in his arm in 1998. In 2004 Conrad Chase offered implanted chips in his night clubs in Barcelona, Spain and in Rotterdam, The Netherlands, to identify their VIP customers, who in turn use it to pay for drinks.


In 2004, the Mexican Attorney General's office implanted 18 of its staff members with the Verichip to control access to a secure data room.

Security experts have warned against using RFID for authenticating people due to the risk of identity theft. For instance a man-in-the-middle attack would make it possible for an attacker to steal the identity of a person in real-time. Due to the resource constraints of RFIDs it is virtually impossible to protect against such attack models as this would require complex distance-binding protocols.


Libraries Using RFID

RFID tags used in libraries: square book tag, round CD/DVD tag and rectangular VHS tag.

Among the many uses of RFID technology is its deployment in libraries. This technology has slowly begun to replace the traditional barcodes on library items (books, CDs, DVDs, etc.). The RFID tag can contain identifying information, such as a book's title or material type, without having to be pointed to a separate database (but this is rare in North America). The information is read by an RFID reader, which replaces the standard barcode reader commonly found at a library's circulation desk. The RFID tag found on library materials typically measures 50 mm X 50 mm in North America and 50 mm x 75 mm in Europe. It may replace or be added to the barcode, offering a different means of inventory management by the staff and self service by the borrowers. It can also act as a security device, taking the place of the more traditional electromagnetic security strip And not only the books, but also the membership cards could be fitted with an RFID tag.

While there is some debate as to when and where RFID in libraries first began, it was first proposed in the late 1990s as a technology that would enhance workflow in the library setting. Singapore was certainly one of the first to introduce RFID in libraries and Rockefeller University in New York may have been the first academic library in the United States to utilize this technology, whereas Farmington Community Library in Michigan may have been the first public institution, both of which began using RFID in 1999. In Europe, the first public library to use RFID was the one in Hoogezand-Sappemeer, the Netherlands, in 2001, where borrowers were given an option. To their surprise, 70% used the RFID option and quickly adapted, including elderly people.

Worldwide, in absolute numbers, RFID is used most in the United States (with its 300 million inhabitants), followed by the United Kingdom and Japan. It is estimated that over 30 million library items worldwide now contain RFID tags, including some in the Vatican Library in Rome.

RFID has many library applications that can be highly beneficial, particularly for circulation staff. Since RFID tags can be read through an item, there is no need to open a book cover or DVD case to scan an item. This could reduce repetitive-motion injuries. Where the books have a barcode on the outside, there is still the advantage that borrowers can scan an entire pile of books in one go, instead of one at a time. Since RFID tags can also be read while an item is in motion, using RFID readers to check-in returned items while on a conveyor belt reduces staff time. But, as with barcode, this can all be done by the borrowers themselves, meaning they might never again need the assistance of staff. Next to these readers with a fixed location there are also portable ones (for librarians, but in the future possibly also for borrowers, possibly even their own general-purpose readers). With these, inventories could be done on a whole shelf of materials within seconds, without a book ever having to be taken off the shelf. In Umeå, Sweden, RFID is being used to assist visually impaired people in borrowing audiobooks. In Malaysia, Smart Shelves are used to pinpoint the exact location of books in Multimedia University Library, Cyberjaya. In the Netherlands, handheld readers are being introduced for this purpose.

The Dutch Union of Public Libraries ('Vereniging van Openbare Bibliotheken') is working on the concept of an interactive 'context library', where borrowers get a reader/headphones-set, which leads them to the desired section of the library (using triangulation methods, rather like GPS) and which they can use to read information from books on the shelves with the desired level of detail (e.g. a section read out loud), coming from the book's tag itself or a database elsewhere, and get tips on alternatives, based on the borrowers' preferences, thus creating a more personalised version of the library. This may also lead them to sections of the library they might not otherwise visit. Borrowers could also use the system to exchange experiences (such as grading books). This is already done by children in the virtual realm at mijnstempel.nl, but the same could be done in physical form. Borrowers might grade the book at the return desk.

However, as of 2008 this technology remains too costly for many smaller libraries, and the conversion period has been estimated at 11 months for an average-size library. A 2004 Dutch estimate was that a library which lends 100,000 books per year should plan on a cost of €50,000 (borrow- and return-stations: 12,500 each, detection porches 10,000 each; tags 0.36 each). RFID taking a large burden off staff could also mean that fewer staff will be needed, resulting in some of them getting fired, but that has so far not happened in North America where recent surveys have not returned a single library that cut staff because of adding RFID. In fact, library budgets are being reduced for personnel and increased for infrastructure, making it necessary for libraries to add automation to compensate for the reduced staff size. Also, the tasks that RFID takes over are largely not the primary tasks of librarians. A finding in the Netherlands is that borrowers are pleased with the fact that staff are now more available for answering questions.

A concern surrounding RFID in libraries that has received considerable publicity is the issue of privacy. Because RFID tags can -depending on the RFID transmitter & reader- be scanned and read from up to 350 feet or 100 m (eg Smart Label RFID's), and because RFID utilizes an assortment of frequencies (both depending on the type of tag, though), there is some concern over whether sensitive information could be collected from an unwilling source. However, library RFID tags do not contain any patron information, and the tags used in the majority of libraries use a frequency only readable from approximately ten feet. Also, libraries have always had to keep records of who has borrowed what, so in that sense there is nothing new. However, many libraries destroy these records once an item has been returned. RFID would complicate or nullify this respect of readers' privacy. Further, another non-library agency could potentially record the RFID tags of every person leaving the library without the library administrator's knowledge or consent. One simple option is to only let the book transmit a code, that will only mean anything in conjunction with the library's database. Another step further is to give the book a new code every time it is returned. And if in the future readers become ubiquitous (and possibly networked), then stolen books could be traced even outside the library. Removing of the tags could be made difficult if they are so small that they fit invisibly inside a (random) page, possibly put there by the publisher.


RFID in Schools and Universities

School authorities in the Japanese city of Osaka are now chipping children's clothing, back packs, and student IDs in a primary school. A school in Doncaster, England is piloting a monitoring system designed to keep tabs on pupils by tracking radio chips in their uniforms. St Charles Sixth Form College in West London, England, started September, 2008, is using an RFID card system to check in and out of the main gate, to both track attendance and prevent unauthorized entrance. As is Whitcliffe Mount School in Cleckheaton, England which uses RFID to track pupils and staff in and out of the building via a specially designed cards.


RFID in Museums

RFID technologies are now also implemented in end-user applications in museums. An example is the custom-designed application "eXsport" at the Exploratorium, a science museum in San Francisco, California. A visitor entering the museum receives an RF Tag that can be carried on a card or necklace. The eXspot system enables the visitor to receive information about the exhibit and take photos to be collected at the giftshop. Later they can visit their personal Web page on which specific information such as visit dates, the visited exhibits and the taken photographs can be viewed.

 
RFID Social Retailing

When customers enter a dressing room, the mirror reflects their image and also images of the apparel item being worn by celebrities on an interactive display. A webcam also projects an image of the consumer wearing the item on the website for everyone to see. This creates an interaction between the consumers inside the store and their social network outside the store. The technology in this system is an RFID interrogator antenna in the dressing room and Electronic Product Code RFID tags on the apparel item.


Miscellaneous

  • The NEXUS and SENTRI frequent traveler programs use RFID to speed up landborder processing between the U.S. and Canada and Mexico.
  • NADRA has developed an RFID-based driver license that bears the license holder's personal information and stores data regarding traffic violations, tickets issued, and outstanding penalties. The license cards are designed so that driving rights can be revoked electronically in case of serious violations.
  • Sensors such as seismic sensors may be read using RFID transceivers, greatly simplifying remote data collection.
  • Milimeter accurate location sensing can be achieved by adding a micrometer wide photodetector and performing a hybrid RF-Optical communication with the RFID tag. This is called Radio Frequency Identity and Geometry (RFIG).
  • In August 2004, the Ohio Department of Rehabilitation and Correction (ODRC) approved a $415,000 contract to evaluate the personnel-tracking technology of Alanco Technologies. Inmates will wear wristwatch-sized transmitters that can detect attempted removal and alert prison computers. This project is not the first rollout of tracking chips in US prisons. Facilities in Michigan, California and Illinois already employ the technology.
  • Transponder timing at mass sports events.
  • Used as storage for a video game system produced by Mattel, "HyperScan".
  • RFIQin, designed by Vita Craft, is an automatic cooking device that has three different sized pans, a portable induction heater, and recipe cards. Each pan is embedded with an RFID tag that monitors the food 16 times per second while an MI tag in the handle of the pans transmits signals to the induction heater to adjust the temperature.
  • Slippery Rock University began using RFID tags in their students' ID cards in the Fall 2007 semester.
  • RFID tags are now being embedded into playing cards that are used for televised poker tournaments, so commentators know exactly what cards have been dealt to whom, as soon as the deal is complete.
  • The Iraqi army uses an RFID security card that contains a biometric picture of the soldier. The picture in the chip must match the picture on the card to prevent forgery.
  • Theme parks (such as Alton Towers in the United Kingdom) have been known to use RFID to help them identify users of a ride in order to make a DVD of their time at the park. This is then available for the users to buy at the end of the day. This is voluntary by the users by wearing a wristband given to them at the park.
  • Many places that employ traditional swipe cards for access control are slowly shifting to RFID no-contact cards.
  • Meetings and conventions have also implemented RFID technology into attendee badges allowing the ability to track people at conferences. This provides data that can display what rooms people have enter and exited during the day. This data is available to show organizers to help them improve the content and design of the conference. RFID is also being used to improve the lead retrieval process for exhibitors at exhibitions.
  • RFID transponder chips have been implanted in golf balls to allow them to be tracked. The uses of such tracking range from being able to search for a lost ball using a homing device, to a computerized driving range format that tracks shots made by a player and gives feedback on distance and accuracy.
  • In 2007 artist couple artcoon starts their world project Kansa. Sirpa Masalin's human-like wooden sculptures carry an RFID inside. Hans-Ulrich Goller-Masalin created a New Media Art work which traces the individual sculptures of Kansa in the internet. Owners are asked to register the city where their sculpture is located. By comparing the RFIDs unique number referenced at artcoon the owner can identify his sculpture as the original one.
  • Some casinos are embedding RFID tags into their chips. This allows the casinos to track the locations of chips on the casino floor, identify counterfeit chips, and prevent theft. In addition, casinos can use RFID systems to study the betting behavior of players.
  • Hong Kong International Airport places RFID sticker labels on all incoming baggage when received, encoded with the destination and flight.
  • In 2006, the Smart Conveyor Tunnel, designed by Blue Vector, was introduced. This allowed the pharmaceutical industry to track both UHF and HF tags. Rite Aid utilized the technology with some of McKesson Corporation's products.
  • In February 2007, Spanish technicians recruited now by Dipole RFID Engineers Barcelona, achieved to read 99.8% of a Tetra Pak milk pallet with more than 100 boxes in it. Impinj was collaborated like a major technology provider.
  • Audiobooks for children.
  • On September 2008, Violet presented at IFA the first consumer USB RFID reader : Mir:ror. It connects to the PC (Windows or Mac) via USB and launches all kinds of multimedia applications when detecting an object equipped with an RFID-tag.
  • Some hospitals use Active RFID tags to perform Asset Tracking in Real Time.
  • In February 2008, ThingMagic announced a partnership with Dewalt and Ford to equip 2009 Ford F-150, F-Series Super Duty pickups and E-Series vans with an embedded RFID asset tracking system enabled by ThingMagic's Mercury5e readers.
  • In November 2008, Dipole RFID Engineers of Barcelona, Spain, demonstrated 100% reading of a full pallet load of automotive batteries, made possible by special tag designs and higher antenna gain.
  • Two Open source libraries that support various RFID devices are librfid and libnfc.

RFID Potential Uses

RFID can be used in a variety of applications such as:

  • Access management
  • Tracking of goods and RFID in retail
  • Tracking of persons and animals
  • Toll collection and contactless payment
  • Machine readable travel documents
  • Smart dust (for massively distributed sensor networks)
  • Location-based services
  • Tracking Sports memorabilia to verify authenicity

<span style="color: rgb(102,

Comment on this post